1900 545 403
support@fado.vn
truck icon
Theo dõi đơn hàng
Mã đơn hàng
Số điện thoại
  • Mỹ
  • Reliable Machine Learning: Applying SRE Principles to ML in Production
Nhập khẩu tiêu dùng
1,663,797đ
2,727,201đ | 45% OFF
-
+

Reliable Machine Learning: Applying SRE Principles to ML in Production

Bán tại: Mỹ
4.4
2,727,201đ | GIẢM 45%
1,663,797đ
Sản phẩm có thể phát sinh phụ phí vận chuyển
-
+
Dự kiến giao hàng từ Mỹ về Việt Nam ngày 23-12-2025 - 29-12-2025
*Chiết khấu trực tiếp hấp dẫn cho Platinum và Super VIP. Nâng cấp ngay
Giá bạn thấy bằng giá bạn trả
Yên tâm mua sắm, giải tỏa rủi ro
Hàng chất lượng, rõ nguồn gốc
Sản phẩm nhập khẩu chính ngạch
Liên tục cập nhật hành trình
Miễn phí giao hàng trong nước
Cam kết giá bán niêm yết chính xác trên website
Bảo vệ quyền lợi Khách Hàng, hỗ trợ đổi trả nhanh chóng
Chất lượng đảm bảo, nguồn gốc rõ ràng, có đánh giá từ người mua và thẩm định độ uy tín người bán
An toàn, minh bạch hợp pháp, không sợ rủi ro
Theo dõi và cập nhật quá trình vận đơn thường xuyên
Miễn phí giao hàng trong nước, áp dụng cho đơn hàng từ 1,5 triệu
Thương hiệu CATHY CHEN là cái tên nổi tiếng được rất nhiều khách hàng trên thế giới chọn lựa. Sản phẩm RELIABLE MACHINE LEARNING: APPLYING SRE PRINCIPLES TO ML IN PRODUCTION là sự lựa chọn hoàn hảo nếu bạn đang tìm mua một món cho riêng mình.

Thông tin chi tiết

Publisher O'Reilly Media; 1st edition (October 25, 2022)
Language English
Paperback 408 pages
ISBN-10 1098106229
ISBN-13 978-1098106225
Item Weight 1.5 pounds
Dimensions 6.9 x 1 x 9.1 inches
Best Sellers Rank #535,021 in Books (See Top 100 in Books) #211 in Computer Neural Networks #311 in Data Processing #993 in Artificial Intelligence & Semantics
Customer Reviews 4.5 out of 5 stars 23Reviews
Tính năng sản phẩm
Sản phẩm Reliable Machine Learning: Applying SRE Principles to ML in Production của thương hiệu Cathy Chen với nhiều tính năng nổi bậc, là một sản phẩm được nhiều khách hàng trên thế giới lựa chọn.

From the Publisher

Reliable Machine Learning

From the Preface

This is not a book about how machine learning works. This is a book about how to make machine learning work—for you.

The way that machine learning (ML) works is fascinating. The math, algorithms, and statistical insights that surround and support ML are themselves of interest, and what they can achieve when applied to the right data can be nothing short of magical. But we do something a little different in this book. We are not algorithm oriented—we are whole-system oriented. In short, we talk about everything other than the algorithms. Plenty of other works cover the algorithmic component of ML in great detail, but this one is deliberately focused on the whole lifecycle of ML, giving it the time and attention it doesn’t really get elsewhere.

This means that we talk about the messy, complicated, and occasionally frustrating work involved in shepherding data correctly and responsibly; reliable model building; ensuring a smooth (and reversible) path to production; safety in updating; and concerns about cost, performance, business goals, and organizational structure. We attempt to cover everything involved in having ML happen reliably in your organization.

Why We Wrote This Book

We firmly believe at least some of the hype: ML and AI techniques are currently reshaping computing and society at an accelerating rate. To that extent, the public hype has not caught up with the private reality in some respects.1 But we are also grounded and experienced enough to understand just how laughably unreliable and problematic many real-world ML systems actually are. The technology press writes about space flight, while most organizations still have trouble staying upright on their bicycles; these are the early days still. Now is the perfect time to actively pay attention to what ML can do and how your organization might benefit from it.

Having said this, though, we recognize that many organizations are worried about “missing out” on ML, and everything it could do for (and to) their organization. The good news is, there’s no need to panic—it is possible to get started now and to be sensible and disciplined about how you work with ML, in a way that successfully balances both obligation and reward. The bad news, and the reason many organizations are worried, is that the curve of complexity is quite steep. Once you get past the simpler aspects, many of the techniques and technologies are just being invented, and it’s hard to find a solid, paved path.

This book should help you navigate that complexity. We believe that, despite the immaturity of the industry, there is much to be gained by focusing on simplicity and standardization, an approach that has the beneficial side effect of making it easier to get started. Ultimately, organizations that deeply integrate ML into their business will benefit—some substantially2—but they will, of course, need a degree of sophistication about how that is done. A simpler, standardized foundation will facilitate developing that capability better than ad hoc experiments, or even worse, a system that works but no one knows how or why.

Intended Audience

We are writing for anyone who wants to take ML into the real world and make a difference in their organization. Accordingly, this book is for data scientists and ML engineers, for software engineers and site reliability engineers, and for organizational decision makers—even nontechnical ones, although parts of the book are quite technical:

Data scientists and ML engineers: We’ll explore how the data, features, and model architecture you use change the way your model works, and how manageable it is in the long run, all with an eye to model velocity.

Software engineering building ML infrastructure or integrating ML into existing products: We address both how to integrate ML into systems and how to write ML infrastructure. An improved understanding of how the ML lifecycle works helps with developing functionality, designing application programming interfaces (APIs), and supporting customers.

Site reliability engineers: We’ll show how ML systems typically break and how best to build (and manage) them to avoid those failure modes. We’ll also explore the implications of ML model quality not being something a reliability engineer can entirely ignore.

Organizational leaders who want to add ML to their existing products or services: We will help you understand how best to integrate ML into your existing products and services, and the structures and organizational patterns required. Having a sensible way of assessing risks and advantages when making ML-related decisions is important.

Everyone who is rightfully concerned about the ethical, legal, and privacy implications of developing and deploying ML: We will lay out the issues clearly and point to practical steps you can take to address these concerns before they cause damage to your users or your organization.

Mô tả
Thông tin chi tiết sản phẩm:
  • Highlight, take notes, and search in the book
Xem thêm
Người bán: IEA Inc
Giá bạn thấy bằng giá bạn trả
Cam kết giá bán niêm yết chính xác trên website
Yên tâm mua sắm, giải tỏa rủi ro
Bảo vệ quyền lợi Khách Hàng, hỗ trợ đổi trả nhanh chóng
Hàng chất lượng, rõ nguồn gốc
Chất lượng đảm bảo, nguồn gốc rõ ràng, có đánh giá từ người mua và thẩm định độ uy tín người bán
Sản phẩm nhập khẩu chính ngạch
An toàn, minh bạch hợp pháp, không sợ rủi ro
Liên tục cập nhật hành trình
Theo dõi và cập nhật quá trình vận đơn thường xuyên
Miễn phí giao hàng trong nước
Miễn phí giao hàng trong nước, áp dụng cho đơn hàng từ 1,5 triệu
0
So sánh
Bạn có muốn FADO hỗ trợ bạn thông tin sản phẩm và giao hàng. FADO luôn sẵn sàng!
Liên hệ
Đội hỗ trợ mua sắm đã sẵn sàng để tư vấn
Zalo
Hỗ trợ trực tuyến
Chat ngay
Trợ lý mua sắm
Chat ngay
Hotline:
1900 545 403